Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

$\left[\mathrm{Fe}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{2}\right) \mathrm{Cl}_{2}(\mathrm{ROH})\right]$, with $R=M e$ and $E t$

Takashi Kajiwara and Tasuku Ito*

Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
Correspondence e-mail: ito@agnus.chem.tohoku.ac.jp

Received 7 June 1999
Accepted 6 October 1999
The title octahedral complexes, [bis(pyridine-2-carbonyl)aminate]dichloro(methanol)iron(III), $\quad\left[\mathrm{Fe}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{2}\right) \mathrm{Cl}_{2}\right.$ $\left.\left(\mathrm{CH}_{4} \mathrm{O}\right)\right]$, and [bis(pyridine-2-carbonyl)aminate]dichloro(ethanol)iron(III), $\left[\mathrm{Fe}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{2}\right) \mathrm{Cl}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right)\right]$, both crystallize in space group $P \overline{1}$ and have similar structures. Monoanionic bpca ${ }^{-}$[bis(pyridine-2-carbonyl)aminate] acts as a planar tridentate ligand in both cases. Coordination bond distances are in the range typical of high-spin $\mathrm{Fe}^{\text {III }}$ complexes. Carbon-oxygen distances are typical of a $\mathrm{C}=\mathrm{O}$ double bond suggesting the negative charge of the bpca ${ }^{-}$ligand is localized on the central N atom.

Comment

It is known that bpca- [bis(pyridine-2-carbonyl)aminate], formed upon deprotonation of Hbpca, acts as a tridentate N donor rigid ligand and coordinates to transition metal ions such as $\mathrm{Fe}^{\text {II }}$ and $\mathrm{Fe}^{\text {III }}$ (Wocadlo et al., 1993), Mn ${ }^{\text {II }}$ (Marcos et al., 1990), $\mathrm{Cu}^{\text {II }}$ and $\mathrm{Zn}^{\text {II }}$ (Marcos et al., 1989), and $\mathrm{Rh}^{\text {III }}$ (Paul et al., 1998). The resulting complex $\left[M(\mathrm{bpca})_{2}\right]^{n+}$ contains two sets of free β-diketone groups which can coordinate to other metal ions in a chelating mode. We demonstrated that this type of complex acts as a bridging complex ligand to give multi-metal-centered complexes (Kajiwara \& Ito, 1998). With $\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Fe}^{\mathrm{III}}$ ions, this ligand also forms other types of complexes formulated as $\left[\mathrm{Cu}(\mathrm{bpca}) X\left(\mathrm{H}_{2} \mathrm{O}\right)_{n}\right]$ (Folgado et al., $1988,1989)$ and $\left[\mathrm{Fe}(\mathrm{bpca}) \mathrm{Cl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ (Wocadlo et al., 1993). The latter contains high-spin $\mathrm{Fe}^{\text {III }}$, whereas the $\mathrm{Fe}^{\text {III }}$ ions in $\left[\mathrm{Fe}(\mathrm{bpca})_{2}\right] X$ are in a low-spin or medium-spin state depending on X. Such high-spin complexes can be excellent complex ligands in the construction of multi-metal complexes with a large high-spin ground state. We report here two novel

(I) $R=\mathrm{Me}$
(II) $R=\mathrm{E}$
$\mathrm{Fe}^{\text {III }}$ complexes, namely [bis(pyridine-2-carbonyl)aminate]dichloro(methanol)iron(III), (I), and [bis(pyridine-2-

Figure 1
The molecular structure of (I) showing 50% probability displacement ellipsoids.

Figure 2
The molecular structure of (II) showing 50% probability displacement ellipsoids.
carbonyl)aminate]dichloro(ethanol)iron(III), (II), which are promising high-spin complexing ligands.

The reaction of Hbpca in nitromethane with FeCl_{3} in methanol or ethanol affords yellow crystals of (I) and (II), respectively. The molecular structures of (I) and (II) are very similar to each other except for the coordinating alcohol molecules. The hexacoordination of the $\mathrm{Fe}^{\mathrm{III}}$ ion in each compound is achieved by three N atoms from the planar bpca ${ }^{-}$ligand, two Cl ligands cis to each other and the O atom of the alcohol. Iron-ligand distances are all in the range expected for high-spin $\mathrm{Fe}^{\text {III }}$ complexes (Wocadlo et al., 1993). The $\mathrm{O} 3-\mathrm{Fe}-L$ angles ($L=\mathrm{N} 1, \mathrm{~N} 2$ and N 3) are significantly smaller than 90°. Atoms N1, N2, N3 and Cl1 are practically coplanar, and the Fe atom deviates by 0.203 (1) and 0.1979 (7) \AA from their best mean planes in (I) and (II) respectively. The $\mathrm{C}=\mathrm{O}$ distances $[1.223$ (3) and 1.218 (3) \AA in (I), and 1.222 (2) and 1.214 (2) \AA in (II)] are in the usual range for a $\mathrm{C}=\mathrm{O}$ double bond (Etter \& Reutzel, 1991), suggesting that the negative charge of bpca^{-}is localized mainly on the amide N atom of the $\mathrm{O}-\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{O}$ moiety.

Experimental

Solutions of Hbpca ($113 \mathrm{mg}, 0.5 \mathrm{mmol}$) in nitromethane $(5 \mathrm{ml})$ and $\mathrm{FeCl}_{3}(81 \mathrm{mg}, 0.05 \mathrm{mmol})$ in methyl alcohol or ethyl alcohol $(5 \mathrm{ml})$ were mixed with stirring. From the resulting yellow-orange solutions, yellow compounds crystallized after a few days.

Compound (I)

Crystal data

[$\mathrm{Fe}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{2}\right) \mathrm{Cl}_{2}\left(\mathrm{CH}_{4} \mathrm{O}\right)$]
$M_{r}=385.01$
Triclinic, $P \overline{1}$
$a=8.3695$ (11) \AA
$b=8.5208$ (11) \AA
$c=11.7567$ (16) A
$\alpha=101.532(2)^{\circ}$
$\beta=97.517$ (2) ${ }^{\circ}$
$\gamma=109.958(3)^{\circ}$
$V=753.91(17) \AA^{3}$

Data collection

Bruker CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.582, T_{\text {max }}=0.801$
3890 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.090$
$S=0.990$
2795 reflections
247 parameters

Compound (II)

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{2}\right) \mathrm{Cl}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right)\right.$]

$M_{r}=399.03$

Triclinic, $P \overline{1}$
$a=8.5609$ (6) A
$b=8.5998$ (6) \AA
$c=12.0245(9) \AA$
$\alpha=99.744$ (1) ${ }^{\circ}$
$\beta=99.944(1)^{\circ}$
$\gamma=110.483(1)^{\circ}$
$V=791.13(10) \AA^{3}$

Data collection

Bruker CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.688, T_{\text {max }}=0.862$
4571 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.075$
$S=1.027$
3059 reflections
264 parameters
All H -atom parameters refined

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.696 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 2034 \\
& \quad \text { reflections } \\
& \theta=1.81-26.00^{\circ} \\
& \mu=1.369 \mathrm{~mm}^{-1} \\
& T=223(2) \mathrm{K} \\
& \text { Prismatic, yellow } \\
& 0.25 \times 0.24 \times 0.18 \mathrm{~mm}
\end{aligned}
$$

2795 independent reflections
2247 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.057$
$\theta_{\text {max }}=26^{\circ}$
$h=-10 \rightarrow 7$
$k=-5 \rightarrow 10$
$l=-14 \rightarrow 14$

All H-atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0478 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.39 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.63 \mathrm{e}^{-3}$

$$
Z=2
$$

$D_{x}=1.675 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3161 reflections
$\theta=1.78-26.02^{\circ}$
$\mu=1.308 \mathrm{~mm}^{-1}$
$T=193$ (2) K
Prismatic, yellow
$0.32 \times 0.28 \times 0.15 \mathrm{~mm}$

3059 independent reflections
2691 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=26.02^{\circ}$
$h=-10 \rightarrow 9$
$k=-10 \rightarrow 10$
$l=-9 \rightarrow 14$

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0389 P)^{2}\right. \\
\quad+0.2465 P] \\
\quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.003 \\
\Delta \rho_{\max }=0.37 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=-0.28 \mathrm{e}^{-3}
\end{array}
\end{aligned}
$$

For both compounds, data collection: SMART (Bruker, 1998); cell refinement: SMART and SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: TEXSAN (Molecular Structure Corpora-

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for (I).

$\mathrm{Fe} 1-\mathrm{N} 1$	$2.122(2)$	$\mathrm{Fe} 1-\mathrm{O} 3$	$2.232(2)$
$\mathrm{Fe} 1-\mathrm{N} 2$	$2.078(2)$	$\mathrm{Fe} 1-\mathrm{Cl} 1$	$2.2554(8)$
$\mathrm{Fe} 1-\mathrm{N} 3$	$2.115(2)$	$\mathrm{Fe} 1-\mathrm{Cl} 2$	$2.2894(9)$
$\mathrm{N} 2-\mathrm{Fe} 1-\mathrm{N} 1$	$77.24(8)$	$\mathrm{N} 3-\mathrm{Fe} 1-\mathrm{Cl} 1$	$102.95(7)$
$\mathrm{N} 2-\mathrm{Fe} 1-\mathrm{N} 3$	$77.30(8)$	$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{Cl} 2$	$93.91(7)$
$\mathrm{N} 3-\mathrm{Fe} 1-\mathrm{N} 1$	$153.99(9)$	$\mathrm{N} 2-\mathrm{Fe} 1-\mathrm{Cl} 2$	$95.44(7)$
$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{O} 3$	$86.84(8)$	$\mathrm{N} 3-\mathrm{Fe} 1-\mathrm{Cl} 2$	$93.69(7)$
$\mathrm{N} 2-\mathrm{Fe} 1-\mathrm{O} 3$	$81.22(8)$	$\mathrm{O} 3-\mathrm{Fe} 1-\mathrm{Cl} 1$	$85.43(6)$
$\mathrm{N} 3-\mathrm{Fe} 1-\mathrm{O} 3$	$84.13(8)$	$\mathrm{O} 3-\mathrm{Fe} 1-\mathrm{Cl} 2$	$176.34(6)$
$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{Cl} 1$	$100.57(6)$	$\mathrm{Cl} 1-\mathrm{Fe} 1-\mathrm{Cl} 2$	$97.95(3)$
$\mathrm{N} 2-\mathrm{Fe} 1-\mathrm{Cl} 1$	$166.55(7)$		

Table 2
Selected geometric parameters $\left(\AA{ }^{\circ},{ }^{\circ}\right)$ for (II).

$\mathrm{Fe} 1-\mathrm{N} 1$	$2.1269(16)$	$\mathrm{Fe} 1-\mathrm{O} 3$	$2.2051(15)$
$\mathrm{Fe} 1-\mathrm{N} 2$	$2.0767(15)$	$\mathrm{Fe} 1-\mathrm{Cl} 1$	$2.2564(6)$
$\mathrm{Fe} 1-\mathrm{N} 3$	$2.1187(16)$	$\mathrm{Fe} 1-\mathrm{Cl} 2$	$2.2946(6)$
			$102.18(5)$
$\mathrm{N} 2-\mathrm{Fe} 1-\mathrm{N} 1$	$77.00(6)$	$\mathrm{N} 3-\mathrm{Fe} 1-\mathrm{Cl} 1$	$85.83(4)$
$\mathrm{N} 2-\mathrm{Fe} 1-\mathrm{N} 3$	$154.07(6)$	$\mathrm{O} 3-\mathrm{Fe} 1-\mathrm{Cl} 1$	$\mathrm{~N} 1-\mathrm{Fe} 1-\mathrm{Cl} 2$
$\mathrm{~N} 3-\mathrm{Fe} 1-\mathrm{N} 1$	$86.00(6)$	$\mathrm{N} 2-\mathrm{Fe} 1-\mathrm{Cl} 2$	$93.93(5)$
$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{O} 3$	$80.23(6)$	$\mathrm{N} 3-\mathrm{Fe} 1-\mathrm{Cl} 2$	$96.11(5)$
$\mathrm{N} 2-\mathrm{Fe} 1-\mathrm{O} 3$	$85.88(6)$	$\mathrm{Cl} 1-\mathrm{Fe} 1-\mathrm{Cl} 2$	$92.62(5)$
$\mathrm{N} 3-\mathrm{Fe} 1-\mathrm{O} 3$	$101.72(5)$	$\mathrm{O} 3-\mathrm{Fe} 1-\mathrm{Cl} 2$	$97.84(2)$
$\mathrm{N} 1-\mathrm{Fe} 1-\mathrm{Cl} 1$	$166.05(5)$		$176.26(4)$
$\mathrm{N} 2-\mathrm{Fe} 1-\mathrm{Cl} 1$			

tion \& Rigaku Corporation, 1998); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OA1093). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Bruker (1998). SMART and SAINT. Area Detector Control and Integration Software. Bruker AXS Inc., Madison, Wisconsin, USA.
Etter, M. C. \& Reutzel, S. M. (1991). J. Am. Chem. Soc. 113, 2586-2598.
Folgado, J. V., Coronado, E., Beltrán-Porter, D., Burriel, R., Fuertes, A. \& Miravitlles, C. (1988). J. Chem. Soc. Dalton Trans. pp. 3041-3045.
Folgado, J. V., Martínez-Tamayo, E., Beltrán-Porter, A., Beltrán-Porter, D., Fuertes, A. \& Miravitlles, C. (1989). Polyhedron, 8, 1077-1083.
Kajiwara, T. \& Ito, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3351-3352.
Marcos, D., Folgado, J.-V., Beltrán-Porter, D., do Prado-Gambardella, M. T., Pulcinelli, S. H. \& de Almeida-Santos, R. H. (1990). Polyhedron, 9, 26992704.

Marcos, D., Martinez-Mañez, R., Folgado, J. V., Beltrán-Porter, A., BeltránPorter, D. \& Fuertes, A. (1989). Inorg. Chim. Acta, 159, 11-18.
Molecular Structure Corporation \& Rigaku Corporation (1998). TEXSAN. Single Crystal Structure Analysis Software. Version 1.9. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo, Japan.
Paul, P., Tyagi, B., Bilakhiya, A. K., Bhadbhade, M. M., Suresh, E. \& Ramachandraiah, G. (1998). Inorg. Chem. 37, 5733-5742.
Sheldrick, G. M. (1996). SADABS. Program for the Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Wocadlo, S., Massa, W. \& Folgado, J.-V. (1993). Inorg. Chim. Acta, 207, 199206.

